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Effect of Memory Decay on Predictions From Changing Categories

Stuart W. Elliott and John R. Anderson

Carnegie Mellon University

In contrast to the static categories assumed in most categorization experiments, many real-world
categories undergo gradual and systematic change in their definitions over time. Four experiments
were carried out to study such category change. In these studies, participants successfully adjusted
as category change occurred, but also showed a lingering and cumulative effect of past
observations. The participants’ performance was closely modeled by incorporating memory decay
for past observations into J. R. Anderson’s (1990, 1991) rational categorization algorithm and into
a version of R. M. Nosofsky’s (1986) exemplar categorization model. The resulting models suggest
that the decay function is closer to a power law than to an exponential and that decay occurs both
by item and by time, with the item decay being stronger than the time decay. The finding of power
law decay gives additional support to claims that exemplar memories are used in categorization.

It is not possible to step twice into the same river.—Heraclitus

From the examples typically discussed in the categorization
literature, it can seem that most category definitions are
relatively fixed: Dogs don’t switch from barking to meowing,
and poodles don’t mutate into German shepherds. The evolu-
tionary change that does occur in such categories is glacial with
respect to the pace of category formation and use that occurs
during a human lifetime. However, the stability at this rela-
tively abstract category level belies the extensive change that
occurs at the category level specifying individuals: Poodles in
general may not change much over time, but one individual
poodle will grow and change, with a steady mutation in
appearance and behavior over time.!

At more aggregate category levels there is also change that
unfolds fast enough to be experienced by humans. It has
become a truism to note the extensive technological and social
change that occurs during a single person’s lifetime. Cars,
televisions, and computers have all evolved significantly over
the past few decades, as have fashions in clothing, the structure
of our cities, and the roles of women and minorities in our
society. Like the categories specifying individuals, these more
aggregate categories require adjustment in their definitions
over time.

Categories that gradually change expose models of categori-
zation to a somewhat different set of requirements than static
categories do. In particular, changing categories highlight the
interaction between new observations and existing category
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definitions. With fixed underlying categories, successive obser-
vations do not differ systematically from earlier observations,
and in consequence it does not matter much whether the later
observations are being used to update the category definitions.
In contrast, with changing categories the later observations are
systematically different from the earlier observations so that it
makes a significant difference whether these later observations
have a large or small impact on the category definitions, or

~ whether they have none at all.
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Models of categorization differ in the relative weight they
put on new and old observations. Many symbolic categoriza-
tion algorithms, including prototype, feature frequency, and
exemplar models (Estes, 1986; Smith & Medin, 1981), weight
the information from all past observations equally. In contrast,
many connectionist algorithms (Gluck & Bower, 1988; Rumel-
hart, 1989; Rumelhart, Hinton, & Williams, 1986) incorporate
the assumption that greater weight should be placed on more
recent observations and that the relative weight of older
observations should decline exponentially as successive obser-
vations are added. With the delta rule, decay is exponential
because the information from all relevant past observations is
decayed by the same fixed factor in relation to the information
from a new observation. Exponential decay of past observa-
tions has also been incorporated in exemplar models (Estes,
1994; Nosofsky, Kruschke, & McKinley, 1992).

A categorization algorithm incorporating exponential decay
will adjust more quickly to changing category definitions than
will an algorithm that weights past observations equally,
because the exponential decay will put relatively more weight
on the more relevant observations. With equal weighting,
adjustment to a change can occur only as the number of
postchange observations becomes large relative to the number
of prechange observations. Thus, algorithms using exponential
decay have a built-in feature for adjusting to changing category
definitions, whereas algorithms that weight observations equally

! We are grateful to several reviewers for pointing out that Barsa-
lou’s (1989) work on ad hoc and context-dependent categories is a
notable exception to the implicit assumption of stability in much of the
categorization literature.
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require a large number of observations before showing much
adjustment if they already have much experience before the
change occurs. This contrast raises the question of whether
exponential decay of past observations is consistent with
people’s ability to adjust to changing categories.

Another possible form of adjustment, suggested by the
literature on memory retention over time, is that the impact of
past observations will decline according to a power law
function. A theoretical analysis of the potential relevance of
past observations to current goals suggests that memories
should decay according to a power function of time (Anderson,
1990). This theoretical analysis agrees with environmental
estimates of the actual decline in relevance of past observa-
tions over time (Anderson & Schooler, 1991) and with empiri-
cal work on human and animal memory retention over time
(Wickelgren, 1974; Wixted & Ebbesen, 1991). There is no
reason to think that this analysis of potential relevance should
be any different when the information in memory is aggregated
into categories than when it is retrieved separately as memo-
ries (Elliott, 1991). Thus, an adaptive approach to categoriza-
tion suggests that the relative weight of past information
should decline according to a power function.

Equal weighting and exponential decay are convenient to
use in categorization models because they both allow the
information from past observations to be recorded with sum-
mary statistics for each feature of each category. For equal
weighting, a new mean is formed by taking a weighted average
of the old mean and the new observation, with relative weights
ofn/n + 1and 1/n + 1, respectively, where n is the number of
past observations. Similarly for exponential decay, a new mean
is formed using relative weights of d and 1 — d, where d is the
decay factor. Equal weighting requires two summary statistics—
the current mean and number of past observations—whereas
exponential decay requires only one summary statistic for the
current mean (assuming the decay factor is a fixed system
parameter). In contrast, power law decay requires that all past
observations be separately represented because the weights of
all past observations are decaying at different rates. It is
possible to approximate power law decay with exponential
decay to a nonzero asymptote, which does not require sepa-
rately representing all past observations.2 However, given both
the finding of power law decay in the memory retention
literature and the natural representation of that decay using
individual observations, a finding of power law decay would
add weight to the arguments that there is an exemplar basis for
categorization (e.g., Medin & Schaffer, 1978; Nosofsky, 1986).

Related Literatures

The categorization literature has investigated the effect of
abrupt changes in category definitions. The Wisconsin Card
Sorting Test involves category definitions that change from one
feature to another as soon as participants have mastered the
first definition. An inability to adjust is used as an indicator of
impairment, because normal participants are able to accommo-
date themselves to successive shifts of category definitions
(Berg, 1948; Grant & Berg, 1948; Robinson, Heaton, Lehman,
& Stilson, 1980). The ability to adjust relatively quickly
suggests that participants give more weight to more recent

observations. Estes (1989) reported a similar experiment in
which two category definitions were switched. In that experi-
ment, adjustment was the same whether the switch occurred
after 60 or after 180 training trials, suggesting again that
participants place most of their attention on the more recent
observations. These experiments with abrupt category change
suggest a recency effect in categorization, but this inference is
problematic because the abruptness of the change may cause
the original categories to be abandoned rather than updated.

Several researchers have looked at the detailed course of
learning for static categories with results that suggest a recency
effect for changing categories. Busemeyer and Myung (1988)
found that more recent observations were weighted more
heavily when participants were asked to construct their esti-
mates of category prototypes after successive observations.
Nosofsky et al. (1992) fitted an exemplar model to learning
data and found an exponential decay factor of about 0.98 per
trial. Unlike connectionist models that require some exponen-
tial decay in order for learning to take place at all, Nosofsky et
al.’s exemplar model allows either exponential decay or equal
weighting, so that a finding of a decay factor less than 1.0 is an
indicator of a recency effect. Although a decay factor of 0.98
may seem close to 1.0, it implies that more than half the total
weight is being placed on the most recent 35 exemplars in an
experiment with 240 observations.

Work on adjustment to change has been done in literatures
related to but different from categorization. The cue probabil-
ity learning literature concerns the ability to learn to predict a
target dimension from several cue dimensions. This literature
tends to look at tasks involving continuous linear relations
between cue and target dimensions, whereas the categoriza-
tion literature tends to look at tasks involving isolated clusters
of correlated dimensions that correspond to separate catego-
ries. Within the cue probability learning literature, there has
been work on the ability of participants to adjust to shifting cue
validities (e.g., Ruffner & Muchinsky, 1978). Overall, this
literature indicates that participants become less accurate
after cue validity shifts but that they are relatively successful in
redirecting their attention toward those cues that have become
more predictive of the target dimension. In the studies we have
seen, there was only a single cue validity shift.

A related adjustment task has been investigated in the belief
updating literature (see Hogarth & Einhorn, 1992, for a
review). This literature is concerned with understanding the
incremental effects on participants’ beliefs caused by the
addition of successive pieces of information. The information
can be presented to the participants in an ordered fashion,
with largely negative items followed by largely positive items,
or vice versa. Although it is somewhat unnatural, one way to
describe this information ordering is that a change occurs,
from negative to positive or the reverse; participants who show
a recency effect in their beliefs have adjusted to this change in
information, whereas participants who show a primacy effect
have not. Hogarth and Einhorn (1992) summarized a large

2We thank John Wixted for pointing out this approximation.
Exponential decay to a nonzero asymptote can be represented as a
weighted combination of exponential decay to zero and equal weight-
ing.
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number of studies of the effects of presentation order. With
short series of simple pieces of information, participants
showed a primacy effect if they did not have to give a response
until the end of the series, but they showed a recency effect if
they had to give a response after each new information item.
With more complex pieces of information, participants tended
to show a recency effect even if they did not have to respond
until the end of the series. With longer series of information,
participants tended to show a primacy effect even if they had to
respond after each new information item.

The problem of category change addressed here is different
than the problem addressed by the conceptual change litera-
ture (Carey, 1985; Keil, 1989), although the labels are close
enough to be confusing. The conceptual change literature
concerns a series of conceptualizations that a learner may go
through in learning about a static external pattern. The change
that is the focus of that literature is internal to the learner. In
contrast, the category change that we are concerned with is
originaily external to the learner, because the pattern that the
learner is trying to learn is actually changing over time.

To the extent that existing work looks at changing catego-
ries, people seem to show relatively successful adjustment to
change. However, the existing literature does not look exten-
sively at people’s ability to adjust to categories that show
continual and gradual change. The contrast between gradual
and abrupt change is critical, because abrupt change may lead
to the creation of new categories rather than the updating of
old categories. Furthermore, where the existing literature does
show a recency effect in category-based judgments, no attempt
has been made to determine the exact form of the strength
decay for past observations.

We turn now to the first of four experiments, whose purpose
is simply to look at the general course of adaptation to such
gradually changing categories. After establishing that people’s
performance is biased toward their more recent observations,
we describe two models incorporating memory decay that can
produce a recency effect. In Experiment 2 we then present two
methods for investigating the exact form of the decay of
information from past observations. One method involves
seeing how participants’ behavior changes after an inserted
delay, and the other method involves fitting the decay function
of the two models to a complex set of changes. In Experiment 3
we investigate further the effect of an inserted delay, and in
Experiment 4 we investigate further fitting the decay function
to a compiex set of changes.

Experiment 1

Experiment 1 was designed simply to see how successfully
participants can follow a series of changes in two category
definitions. The experimental task involved learning how to
predict the missing dimensions of the stimuli. Participants
made predictions for a series of stimuli, receiving correction
after each. Unlike most categorization studies, the partici-
pants’ ability to group the stimuli into the two underlying
categories was not measured directly. However, because of the
categorical structure of the stimuli, participants could not do
better than chance without being sensitive to that categorical
structure.

Method

Participants. The participants were 20 young adults from the
Carnegie Mellon University community, who received either course
credit or $5 for their participation.

Stimuli and design. The stimuli were pairs of ovals presented on a
Macintosh IIci computer with a monochrome two-page monitor. The
height and the width of the 2 ovals were treated as four dimensions.
The height and width of 1 of the ovals were both fixed, whereas the
height and width of the other oval both changed in a series of steps
over the course of the experiment. The two fixed dimensions provided

‘'unambiguous information about category membership. The change on

the other two dimensions took place over a series of five blocks of
observations. Within each block, there were 16 stimuli from each of
the two categories, for a total of 160 stimuli for the entire experiment.
Figure 1 shows the mean values for the two categories on Blocks 1, 3,
and 5.

As the figure shows, the change was defined so that the categories
exchanged one of their ovals: Category A started out with a tall thin
oval and ended up with a short wide oval, whereas Category B did the
reverse. The location of the changing oval was counterbalanced, so
that half of the participants saw the pairs as in Figure 1, with the
changing oval on the bottom, and half saw the pairs with the changing
oval on the top. The order of the stimulus series was also counterbal-
anced, with half of the participants seeing the series in the forward
direction and half in the reverse direction.

The dimensions were coded on a unit interval, where the full value
of 1 corresponded to a maximum height or width of 3.15 in. (8.0 mm)
on the computer screen. For the fixed oval, Category A had a mean
height of 0.6 unit and a mean width of 0.8 unit, and Category B had a
mean height of 0.4 unit and a mean width of 0.2 unit. For the changing
oval, the mean height ranged between 0.4 unit and 0.6 unit, with
intermediate stops at 0.45, 0.5, and 0.55 unit, and the mean width
ranged between 0.2 unit and 0.8 unit with intermediate stops at 0.35,
0.5, and 0.65 unit.

The actual observations were distributed around each of the block
means with a variance of 0.005, resulting in a standard deviation of
about 0.07. Within each block of observations, 16 stimuli were created
for each category such that the values on each dimension had the

Block 1 Block 3

Block 5

Figure 1. Mean values for stimuli used in Experiment 1, for Catego-
ries A and B on Learning Blocks 1, 3, and 5. Stimuli are shown in the
forward direction, with the changing oval on the bottom.
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appropriate distributions. The 16 stimuli for the two categories were
then randomly mixed within each block, resulting in a single stimulus
series with 160 items. The same single stimulus series was used for all
participants. The variance was chosen to be large enough to mask the
changes between each block but small enough that participants would
feel relatively confident about predicting values on each dimension. It
was important to mask the change enough that participants would
respond on the basis of their actual observations; an unmasked change
might be noticed by some participants who could then start to
anticipate future changes, rather than rely on their past observations.
For the changing width, each incremental step increased the mean by
about two standard deviations, whereas for the changing height each
step increased the mean by about 0.7 standard deviation.

For each stimulus, participants were given one of the ovals to use to
predict the other oval. On half of the trials they used the fixed oval to
predict the changing oval, and on the other half they used the changing
oval to predict the fixed oval. Each stimulus was initially presented
with the oval to be predicted replaced by an anchor oval in the middle
of the distribution, with height and width of 0.5 unit. The four
dimensions of the stimulus were manipulated by using a mouse to
control four pairs of buttons on the screen, with one button to increase
and one to decrease each dimension. For each stimulus, only two pairs
of buttons were activated, corresponding to the two dimensions to be
predicted.

When the participant had completed each prediction, the correct
oval pair was shown along with a superimposed outline of the
participant’s prediction. The drawing was accompanied by an error-
units score that ranged from 0 to 100. The score was obtained by taking
the square root of the mean squared error of the two predicted
dimensions and multiplying it by 100. Good scores were followed by
comments: “Good” for scores from 8 to 14, “Very good!” for scores
from 4 to 7, and “GREAT!” for scores from 0 to 3.

Procedure. Participants received both verbal and on-line instruc-
tions that their task was to “learn to make predictions about pairs of
ovals” and that this would involve figuring out “what a correct oval pair
should look like.” None of the instructions mentioned that the oval
pairs were structured around categories, and none of the instructions
suggested that the criteria for a correct oval pair might change over the
course of the experiment. We gave participants a brief practice session
50 that they would be able to use the controls to change the shapes of
the ovals and to interpret the corrections they received after each
prediction. Once they were set up on the computer, participants
proceeded automatically from the on-line instructions to the practice
session and then to the prediction task. We left participants alone for
the entire computer session, but interrupted them briefly after the
initial 5 min to ask if they understood the instructions and the controls.
Participants had unlimited time to make the prediction and view the
correction for each stimulus. After the computer session, we showed
participants (simultaneously) 12 pairs of ovals and asked them to rate
their typicality on a scale from 1 (never appears) to 5 (very often
appears). The stimuli used in this rating were the mean oval pairs for
both categories at Blocks 1, 3, and 5, along with the same 6 pairs shown
upside down.

Results and Discussion

Figure 2 shows the course of learning for all participants
over the five blocks of the experiment for the two changing
dimensions. In this figure, the actual predictions have been
recoded to show the percentage of change they indicate,
according to the appropriate dimension and category. For
example, the width of the changing oval for Category A for
participants going in the forward direction increases from 0.2
to 0.8 unit. An observation of 0.35 unit on this dimension for
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Figure 2. Predictions on changing dimensions for Experiment 1.
Predictions were averaged over categories and dimensions, after being
recoded so that the true mean of each category of each dimension
moved from 0 on Block 1 to 1 on Block 5. Error bars represent
standard errors. -

Category A would be coded as 0.25, because it represents 25%
of the distance from 0.2 to 0.8 unit. To give another example,
the height of the changing oval for Category A for participants
going in the forward direction decreases from 0.6 to 0.4 unit.
An observation of 0.45 unit on this dimension for Category A
would be coded as 0.75, because it represents 75% of the
distance from 0.6 to 0.4 unit. After recoding, it is easy to
compare the predictions with the changing mean of the
observations, which has values 0, 0.25, 0.5, 0.75, and 1.0 unit
over the course of the 5 blocks.

Two conclusions can be drawn from Figure 2. First, partici-
pants adjusted more quickly than they would have if they had
weighted all past observations equally. If participants had
weighted all observations equally, then by the end of Block 5
their recoded predictions would have reached 0.5 unit, with
the average over Block 5 being somewhat less than 0.5 unit.
However, the mean of the participants’ recoded predictions in
Block 5 was 0.679 unit, which is significantly greater than 0.5
unit, £(19) = 6.05, p < .001, MSE = 0.0174. This higher mean
indicates that participants were giving more weight to the more
recent observations, which had higher values than did the
earlier observations.

The second conclusion that can be drawn from Figure 2 is
that participants adjusted less quickly to the changes than they
would have if they had paid attention to only the most recent
observations. If participants had paid attention to only the
most recent observations, then their predictions would have
closely followed the progress of the true values, and their
average recoded predictions over all five blocks would have
been 0.5 unit. However, the mean of the participants’ recoded
predictions over all five blocks was 0.424 unit, which is
significantly less than 0.5 unit, #(19) = 4.23,p < .001, MSE =
0.00637. This lower mean indicates that the participants’
predictions were being held down by the continuing effect of
earlier observations. This effect was particularly striking dur-
ing Blocks 4 and 5. Note that during Block 1 the mean of the
participants’ recoded predictions was substantially above the

_
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true observation mean of 0. This is not surprising, because
when participants started making predictions in Block 1 they
knew nothing about the stimuli structure, and so their early
predictions had to have been noisily distributed around the
0.5-unit midpoint of the interval.

The typicality ratings reinforce the conclusion that partici-
pants placed greater weight on their more recent observations.
In the typicality ratings, there was a main effect of block, F(2,
38) = 6.210, p < .01, MSE = 2.12. The typicality ratings were
taken at the end of the experiment, with the more recent Block
5 figures receiving a mean of 3.63, compared with the earlier
Block 1 and Block 3 figures, which had means of 2.89 and 2.96,
respectively.

Both the predictions and the typicality ratings made by
participants were biased toward the more recent observations.
These results cannot be accommodated by categorization
models that weight all past observations equally. They require
instead that more weight be placed on the more recent
observations. We therefore turn next to two models of category-
based predictions that incorporate memory decay.

Models of Category-Based Predictions Incorporating
Memory Decay

Two models of recency-biased predictions were constructed
by incorporating memory decay into different categorization
models. The first model is based on Anderson’s (1990, 1991)
rational categorization algorithm, and the second is an exem-
plar categorization model based on Nosofsky’s (1986) general-
ized context model. Both models are briefly reviewed below.
Two categorization models were used here to deflect attention
from the idiosyncrasies of the models themselves and focus it
instead on the addition of memory decay to the models and on
the form that the memory decay takes.

The central problem that any categorization algorithm faces
is to determine the category of a new observation given its
observable feature structure. In Anderson’s (1990, 1991)
rational categorization algorithm, the probability of the obser-
vation falling into any category k, conditional on its feature
structure F, is calculated with Bayes’s rule using the prior
probabilities of each of the categories P(k) and the conditional
probability of observing F from each of the categories P(F |k):

P(k)P(F k)

PR = > POPEIE)’

¢))

The prior probability P(k) is calculated both for the k
categories that the algorithm has already created from its
previous n observations and for the possible new category, k =
0, that could be created for the new observation:

P(k) = M 2)
(1-=c)+ecen
(-9
P(0) = m ) €))

where ny is the number of observations in each category, and ¢

is the coupling parameter, which is the probability that any two
objects come from the same category. The derivations of these
formulas can be found in Anderson (1990). The formulas
require an a priori decision about how stringent to be in
grouping items, ranging from putting all items into separate
groups (¢ = 0) to putting all items into the same group (¢ = 1).

The conditional probability of observing the feature struc-
ture from each of the categories, P(F|k), is calculated as the
product of the feature probability densities of the individual i
features, fi(Filk), on the basis of the assumption that all
features are independent:

P(F|k) = Hﬁ(F:Ik), @)

where F; refers to the ith feature of the feature structure F.
Feature probability densities are used instead of feature
probabilities because all four dimensions are continuous rather
than discrete.

The feature probability densities for each dimension i,
fix|k), are calculated according to a Bayesian analysis for
estimating a normal distribution with unknown mean and
variance. This analysis results in a ¢ distribution for the
probability density of the current observed value x that is a
function of the prior mean and variance, po and o'(z,, the
confidence in the values for the prior mean and variance, Ay
and ap and the mean and variance of the previous ny
observations of dimension i for that category, ¥ and s}
(Anderson, 1991). Thus, the model begins with prior values for
the unknown mean and variance of the normal distribution,
along with values for its confidence in those prior values, and
then updates the mean and variance estimates with the
observed values. The confidence for each of the prior values
determines how quickly the model will move from the prior
values to the observed values. In the Bayesian updating
formulas, the confidence values \g and ay give the strength of
the prior values in terms of an equivalent number of true
observations. Thus, a confidence of 10 indicates that more than
10 observations are necessary before the observed value is
given more weight than the prior value, whereas a confidence
of 0.1 indicates that even a single observation (or two, for the
variance) will overwhelm the prior value.

The expected value E (i) on each unobserved dimension i of
the new observation is simply a weighted average of the
category means for that dimension. The weights used are the
conditional probabilities that the new observation is a member
of each of the categories:

E(i) = ; P(k|F)pies )

where p; is the current estimate of the mean of dimension i for
category k and is calculated as a weighted average of the prior
mean and the mean of the observations of dimension i for
category k:

_ Aoktg + My
Pk N+

(6)
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When memory decay is added to the rational categorization
algorithm, the primary change is that the past observations are
no longer weighted equally. Instead, the weight of each
observation starts out as 1 and then decays away. There are a
number of possible forms of memory strength decay that might
be considered to model the adjustment to category change (cf.
Wixted & Ebbesen, 1991). We wili limit ourselves to four:
exponential and power law decay, each occurring either by
item or by time.

Memory decay affects the various ns, as well as the means
and variances, ¥; and s2, of each dimension of each category.
The number of observations n is replaced by n,, the total
remaining weight of all past observations at time ¢. For
exponential decay by unit time, 7, is calculated as a function of
the decay factor d applicable to the passage of a unit of time:

n

n= 2 dm D

v=1

where 1y is an age function, giving the age in time units of the
vth observation at time . For power law decay by unit time, n, is
calculated as a function of the scaling parameter a for the age
in time units and of the power b:

n = i (1 +am,)™". ®
v=1

For decay by item, the age function 7,, in Equations 7 and 8 is
replaced by n — v.

Similar formulas yield the total remaining weight of the
observations at time ¢ for each category, ny, and the total
remaining weight of the observations for each dimension of
each category, ny,. Similarly, the means and variances, X and
s%, of each dimension of each category are replaced by their
weighted values at time ¢, Xy, and s;‘;d. These statistics are
calculated as weighted averages of the relevant past observa-
tions, using the remaining weight of each observation as its
weight for the weighted averages. For example, the mean Xy,
under power law decay is calculated as follows:

| _ 13
T = —— Dxal +any) ™ ©)
ikt v=1

where x,; is the value of observation v on dimension i for
category k.

Because the confidences in the prior values are essentially
equivalent to some number of true observations, the addition
of strength decay for the observations suggests that the
confidences should perhaps decay in an analogous fashion. On
the one hand, the prior values can be thought of as distilled
information from past observations in other domains. Because
this information comes from past observations it may make
sense for it to decay in strength. On the other hand, it may be
that the process of aggregating information from other do-
mains results in priors that are relatively robust to change and
so have no need to decay. To accommodate either of these
possibilities, the model allows the confidence in the prior mean
to decay in the same way that the observations do Ay, except

that the decay function for the confidence in the prior mean is
fit separately from the decay function for the strengths of the
observations. The model’s predictions are less sensitive to the
confidence in the prior variance ag, and so this confidence is
kept constant to reduce the number of estimated parameters.

In contrast to most symbolic categorization algorithms,
including the rational model, exemplar models do not attempt
to group their observations into categories. Instead, a similar-
ity measure is calculated between the test stimulus and each
past exemplar observation, and this similarity measure is then
used to weight the category information contained in the
exemplar observations. To model the category-based predic-
tions in these experiments, the same basic procedure was used
except that the model used the similarity measure to weight
the size information contained in the exemplar observations
for the dimensions that need to be predicted. Adapting
Nosofsky’s (1986; Nosofsky, Clark, & Shin, 1989) notation to
the notation already used for the rational model, the similarity
s; between the test stimulus and each past observation j is
calculated using the distance d; between them in terms of the
dimensions observed:

d;= X wiF; - x| (10)

5; = e, (11)

where F; is the ith feature of the test stimulus, x; is the ith
feature of the jth observation, the w; are attentional weights on
the observed dimensions, and c is a sensitivity parameter that
scales the absolute distances for calculating the similarity
measure.

In the simple exemplar model without decay, the expected
value E(i) on each unobserved dimension i of the new
observation is the similarity-weighted average of the past-
observation values on that dimension.

2 SjXij

J

ESJ ’
j

EG) = (12)

where Equation 12 is analogous to Equation 5 for the rational
model. In the model that includes decay, the similarity of each
past observation is combined with its total remaining weight o,
at time £:

2 Sjwje X

E(i) = fs‘_ , (13)
s it

where o is calculated with the appropriate exponential or
power law decay function, as in Equations 7 and 8 for the
rational model (cf. Nosofsky et al., 1992).

In Nosofsky’s model, which is used to predict discrete-
valued category labels, the similarity-weighted averaging of the
category information in the observations is adjusted by re-
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sponse-bias parameters for each of the categories.> The model
used here adapts these response-bias parameters to serve the
case of predicting continuous dimensions rather than discrete
category labels. The approach is simply to employ a prior mean
of 0.5 (for the 0-1 range) with a strength of Ay as in the rational
model:

M‘OS + 2 s}mj,x,j
J
E(iy=s—"7=<— (14)
! AOI + 2 S](l)ﬂ
)

As with the rational model, the prior strength is allowed to
decay according to its own decay function.

Distinguishing Forms of Memory Strength Decay

The design of Experiment 1 was too simple to yield fine-
grained information about the form of the strength decay for
past observations. Both the rational and the exemplar models
with either exponential or power law decay can produce
essentially perfect fits of the performance shown in Figure 2.
However, with a more sensitive use of changing categories, it
becomes possible to distinguish between predictions based on
exponential and power law decay, and between decay by item
and by time. In general, exponential decay contrasts with
power law decay by having a weaker long-term retention of
memories; with power law decay there is a fast initial decay of
memory strength but then a much slower decay later on. It is
possible, at least in principle, to design sequences of changes
that will result in distinctive adjustment patterns for the two
decay forms. To distinguish between decay by item and decay
by time, participants’ performance can be assessed after a
delay, during which time has passed but no new observations
have been received. Experiment 2 included both a complex
change sequence with distinctive adjustment patterns for
exponential and power law decay as well as an overnight delay
to contrast decay by item and decay by time.

In addition, the design of Experiment 2 allowed a more
specific test of the decay function, involving the combined
assumptions of power law decay and time decay. If decay
occurs by item or if its form is exponential, then the relative
strength of all past observations will be the same after a delay.
However, if the decay occurs according to a power law and is a
function of time, then all observations would decay during the
delay with the more recent observations decaying more quickly
than the more distant observations. The result of this unequal
decay would be a relative reweighting of the observation
strength, reducing the relative proportion of strength of the
later observations and increasing that of the earlier observa-
tions.

An example of the reweighting effect is shown in Figures 3
and 4. Figure 3 shows the strength remaining for 160 observa-
tions at three different times, where the strength is determined
by the power law decay function (1 + .1897)~1-%, where 7 is the
age of the observation. The strength is shown first for Time
161, indicating the strength of all past observations that would
apply if a 161st prediction had to be made immediately. The
other two times are at 177 and 193, which are, respectively, 16

1.0
Time 161
ssvevesssesesnse Tm\e 177
ssasenss  Time 193
0.81
o0
£
=
‘E 067
E
[
]
£
o0 041
=
o
=
w
0.21
00.@ - .
0 32 64 96 128 160

Observation Number

Figure 3. Remaining strength of 160 observations originally observed
from Time 1 to Time 160, with strength shown at Time 161, Time 177,
and Time 193. Decay occurred according to the power law function
(1 + .1897)~12, where 7 is the age of the observation.

and 32 time units later. As the figure shows, the strength of the
early observations was barely affected by the addition of 32
time units, because those observations were already well past
their period of fast decay. However, the most recent observa-
tions experienced significant decay from the passage of a few
additional time units. In Figure 4, the 160 observations are
broken up into five blocks, corresponding to the blocks used in
Experiments 1 and 2. Figure 4 shows the proportion of total
strength represented by the observations in each block at each
of the three times. As time moved from 161 to 177 to 193, the
proportion of strength in Block 5 declined from 0.67 to 0.50 to
0.43, while the proportion of strength in the earlier four blocks
increased.

If participants’ memory for the past observations decays
according to a power function of time, then their predictions
should show a regression toward the equal weighted average
after a delay as the more heavily weighted recent observations
experience the early fast decay. This prediction of a regression
effect is reminiscent of the spontaneous-recovery phenomenon
in the paired-associates literature (Brown, 1976; Crowder,
1976).

Experiment 2

Experiment 2 was designed to test how well the categoriza-
tion models with memory decay could reproduce participant

3 Using consistent notation, Nosofsky’s formula for the probability
of responding with category k becomes

P(x) =b.(j62Ks,-/; (bkjg,-\‘j),

where the b are the response-bias parameters for each category.
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Figure 4. Relative strength remaining at Time 161, Time 177, and
Time 193, for the 160 observations of Figure 3, aggregated by blocks of
32 consecutive observations.

performance and to investigate the specific decay function for
past observations of changing categories. The experiment
included the three different kinds of decay function tests
discussed above. To look for adjustment patterns distinctive of
either exponential or power law decay, we separated the
change on the two changing dimensions to make the overall
adjustment pattern more complex. One dimension changed
during the first half of the experiment and then remained
constant during the second half, whereas the other dimension
was constant during the first half and changed during the
second half. To contrast item decay and time decay, a 24-hour
delay was added for some participants between the first change
and the second change. We reasoned that when participants
encounter the second changing dimension, they should take
extra time to overcome the effects of their past observations of
that dimension at its initial constant value. However, if decay
occurs by time rather than by item, then the obstacle posed by
those past observations should be reduced when the second
change occurs after a delay because the strength of the past
observations would have decayed. Finally, two tests were
added between the two changes to look for the hypothesized
regression effect that would result from exemplar reweighting
after a delay if memory decay is a power function of time.

Method

Participants. Twenty young adults from the Carnegie Mellon Uni-
versity community participated and were paid $10. None of the
participants had been involved in Experiment 1.

Stimuli. The stimuli were pairs of ovals, as in Experiment 1. As
before, these pairs of ovals were generated from two different
categories that were defined on four dimensions, two of which
exchanged values over the course of the learning trials. Unlike in
Experiment 1, however, these changes did not occur at the same time.
The experiment had two consecutive learning sessions, each of which
involved a series of 160 stimuli in five blocks of observations. One of
the dimensions exchanged values between the categories in each of the
sessions (the EarlyChange and LateChange dimensions, respectively).
Figure 5 shows the mean values for the two categories at the beginning

and end of the two learning sessions. Going in the forward direction,
the heights of the top ovals were exchanged between categories during
the first learning session (Blocks 1-5), and the widths of the bottom
ovals were exchanged between categories during the second learning
session (Blocks 6-10). As in Experiment 1, the direction of the
stimulus series was counterbalanced, with half of the participants
seeing the series in the forward direction and half seeing it in the
reverse direction.

For both changing dimensions, the mean values ranged between 0.2
and 0.8 unit. For the fixed dimensions, Category A had a mean upper
width of 0.8 unit and a mean lower height of 0.6 unit whereas Category
B had a mean upper width of 0.3 unit and a mean lower height of 0.3
unit. These mean values were used as in Experiment 1 to create a
stimulus series for each of the two learning sessions.

As in Experiment 1, the learning sessions required the participant to
make a prediction about one of the ovals, which was followed by a
display of the correct oval pair along with a superimposed outline of
the participant’s prediction. The error units and possible comments
accompanying the display of the correct pair were the same as before.
The one change in the learning procedure was in the size of the anchor
oval that replaced the oval to be predicted when each stimulus was
initially presented; this oval had a height and width of 0.01 unit, rather
than 0.5 unit as in Experiment 1. This modification was made to avoid
having the changing dimensions move from being larger than the
anchor to being smaller, or vice versa, which might have made the
change more obvious.

In addition to the second learning session, two test sessions were
added to the experiment. The test sessions were exactly like the
learning sessions except that no feedback about the correct oval pair or
the success of the participant’s predictions was presented. The test
sessions occurred between the two learning sessions. The mean values
for the stimuli used in these test sessions were the same for each

Learning Session 1 Learning Session 2

\ o

Block 1 Block 5/6 Block 10

P+s
o3 !

Figure 5. Mean values for stimuli used in Experiment 2, for Catego-
ries A and B on Learning Blocks 1, 5, 6, and 10. Stimuli are shown in
the forward direction.
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category as the values used in Blocks 5 and 6 of the learning sessions.
Each of these tests had 16 stimuli, with 8 drawn from each category.

Design. Half of the participants (immediate condition) completed
the entire experimental sequence in a single 2-hour session, whereas
the other half (delay condition) completed the first learning session
and first test on the first day and the second test and the second
learning session on the following day. As described above, there was a
within-subject contrast between the EarlyChange and LateChange
dimensions.

Procedure. The task instructions were the same as before, except
for the addition of the second learning session and the two tests.
Unlike the previous experiment, only on-line instructions were used.
There was no typicality test following the computer sessions.

Results and Discussion

Figure 6 shows the course of learning for all participants
over the 10 blocks of the experiment for the two changing
dimensions. The results were recoded as in Figure 2 for
Experimént 1, except that the two dimensions are shown
separately because they change at different times. Note that on
the recoded scale, the observations of the EarlyChange dimen-
sion are distributed around a mean value of 1.0 for Blocks
5-10, whereas the observations of the LateChange dimension
are distributed around a mean value of 0 for Blocks 1-6. The
figure collapses over the delay versus immediate timing con-
trast because there was no significant main effect of timing,
F(1, 18) = 1.104, p > .30, MSE = 0.0366; and there were no
significant interactions of timing with the two changing dimen-
sions, F(1, 18) = 1.708, p > .20, MSE = 0.0281; with the 10
learning blocks, F(9, 162) = 0.615,p > .78, MSE = 0.0232; or
with the two changing dimensions and 10 learning blocks
together, F(9, 162) = 1.299,p > .24, MSE = 0.0120.

On Blocks 1-5, the EarlyChange dimension replicated the
results from Experiment 1. On Block 5, the participants’
recoded mean prediction was 0.777 unit, which was signifi-
cantly greater than the equal weighting average of 0.5 unit,
t(19) = 10.2, p < .001, MSE = 0.0147. When averaged over
Blocks 1-5 of the EarlyChange dimension, the participants’
recoded mean prediction was 0.442 unit, which was signifi-

[ o EarlyChange
- m LatcChange

Recoded Predictions
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Figure 6. Average predictions on the EarlyChange and LateChange
dimensions for Experiment 2. Predictions were averaged over catego-
ries, after being recoded so that the true mean of each category of each
dimension moved from 0 to 1 over the course of its change. Error bars
represent standard errors.

cantly less than the average true value of 0.5 unit, £(19) =
2.603, p = .02, MSE = 0.0100. As in Experiment 1, these
results indicate that participants were placing more weight on
the most recent observations but that they were giving some
weight to the earlier observations as well.

To compare the participants’ course of learning with the
adjustment patterns of exponential and power law decay
requires the category-based prediction models that incorpo-
rate those decay functions. The results from the models are
discussed in the next section. Here we discuss the two other
tests of the form of the decay function.

To test whether decay occurred by item or by time, the
adjustment during the first and second learning sessions can be
compared for the immediate and delay participants. Although
there were no overall effects of timing, any such effects should
have occurred only during the second learning session and so
would be hard to detect when the 10 blocks from both learning
sessions are considered together, as in Figure 6. The two
learning sessions are considered separately in Figure 7, which
superimposes the five blocks of change for each.

Figure 7 shows that the LateChange dimension was below
the EarlyChange dimension for all five blocks of change, for
both the immediate and delay participants. The difference
between the two dimensions averaged 0.137 over the five
learning blocks and was statistically significant, F(1,18) =
11.980, p < .01, MSE = 0.0782. However, this dimension
difference did not interact with the timing difference, F(1,
18) = 0.015, p > .90, MSE = 0.0782. Thus, the adjustment to
the five-block change on the LateChange dimension was held
down by the continuing effect of all the Session 1 observations,
which had a recoded mean of 0, and this effect was not
lessened by inserting a delay between the learning sessions.
However, if the decay of past observations was a function of
time, then a delay should have weakened the strength of the
Session 1 observations on the LateChange dimension, which
would have made the LateChange adjustment for the delay
participants look more like their EarlyChange adjustment.
Because there was no interaction between the dimension and
timing differences, this test implies that the memory decay
involved in changing categories occurred by item rather than
by time.*

The other test of the form of the decay function involved
looking at the two tests inserted between the learning sessions
for evidence that a delay causes the relative weights of the
Session 1 observations to shift. This weight shift would in-
crease the relative strength of the earlier observations and
decrease the relative strength of the later observations, result-
ing in a regression toward the earlier values. Such a regression
would imply that decay is a power law function of time. The
design of Experiment 2 allowed both a between-subjects and a
within-subject test for a regression effect. The between-
subjects test looked for a main effect of immediate versus delay

4 The delay participants appeared to learn more successfully on both
learning sessions, as reflected in a suggested interaction of the timing
difference with the five-block course of learning, F(4, 72) = 2.023,p =
.10, MSE = 0.0149. Because the immediate and delay participants
were treated identically during Session 1, this apparent effect of the
timing difference was probably a participant effect.
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Figure 7. Average predictions over the five-block change for the
EarlyChange (EarlyChg) and LateChange (LateChg) dimensions in
Experiment 2, shown separately for immediate (Immed) and delay
participants. Predictions were averaged over categories, after being
recoded so that the true mean of each category of each dimension
moved from O to 1 over the course of its change.

timing on Test 2. A regression effect would result in lower
recoded mean predictions for the delay participants than for
the immediate participants on Test 2. However, there was no
indication of a between-subjects main effect of timing, F(1,
18) = 0.012, p > .91, MSE = 0.0320. The within-subject test
looked for a main effect of test number for the delay partici-
pants only, whose two tests were separated by a 1-day delay.
Although the trend was in the right direction for a regression
effect, with recoded mean predictions by the delay participants
of 0.783 unit and 0.726 unit on Test 1 and Test 2, respectively,
the difference was not significant, F(1, 9) = 3.723, p = .09,
MSE = 0.0044. This suggestion of a regression effect was
investigated further in Experiment 3.

Modeling the Adjustment Pattern of Experiment 2

The rational and exemplar models resulted in a total of eight
model variants to be fit to the Experiment 2 adjustment
pattern, when both exponential and power law decay were
considered for the decay of both the observations and the prior
belief about the mean. Because there was no effect of delay in
the adjustment pattern of the participants, the simulations
assumed that the stimuli were all presented on a single day.
The simulations assumed that decay occurred by time, but this
was essentially equivalent to decay by item because the
categories were equally distributed, and there was no delay
between the sessions. The simulations were run on the 320
observations of the two learning sessions, ignoring any effect of
the intervening tests. A unit of time was defined as the time
required for a participant to process and respond to a single
stimulus.

For the simulations using the rational model, the coupling
parameter c is set to 0.3, the value used in a number of tests of
the rational algorithm (Anderson, 1990, 1991). The precise
value does not matter, as long as it is in the range for which a
small (but nonunitary) number of categories is created. Note

from Equations 1-3 that ¢ plays a role only in determining the
weight on the new category; it does not affect the relative
strengths of existing categories, because it cancels out in
likelihood ratios of existing categories. In the simulations of
Experiment 2, the model had no difficulty grouping around the
two clear categories.

The prior mean pg used in the rational model was set at 0.5,
the midpoint of the range for each dimension. Anderson and
Matessa (1990) suggested that the prior variance of should be
set at the square of one-quarter of the stimulus range, allowing
values over the entire stimulus range, which would give a value
here of 0.0625. The simulations here used a smaller value of
0.018 that was based on the expected number of pieces that
each continuous dimension would be broken into to define
multiple categories. The intuition for this smaller value is that
if one has the prior expectation that a continuous dimension
will be divided into small and large values that will be used to
define different categories, then one should expect that within
each category the values will include only half the entire
stimulus range. According to this argument, the prior variance
should be set at the square of one-eighth the entire stimulus
range, giving a value of about 0.016. The simulations used a
slightly larger value because of an involved argument that not
all dimensions would need to be divided into pieces for
defining categories.

The prior mean confidence, Ay, was one of the parameters
that was fitted to the data. This parameter was critical in
modeling the early part of the participants’ adjustment path,
when they were just learning the category structure and their
predictions were biased toward the midpoint of the interval.
The model was not particularly sensitive to the prior variance
confidence, oy, which was set at 10. The decay function for the
prior weight was applied only to the prior mean confidence;
because the prior variance was less critical to this simulation,
the confidence in its prior was kept constant.

For the exemplar model, the distances from different dimen-
sions were assumed to be weighted equally, and were each
weighted at full strength rather than averaged (which halves
the size of the sensitivity parameter c). The simplification of
equal weighting was used because the model was being fitted to
aggregate data that had been counterbalanced across partici-
pants. The sensitivity parameter ¢ was fit as an additional
parameter, because it was crucial in determining whether the
model would take information from only the few closest-fitting
exemplars or whether it would aggregate relatively equally
across a large number of nearby exemplars.

The strength of the prior mean A for the exemplar model,
along with its decay function, was fit to the data in the same
way as for the rational model.

The fitting of the models to the data involved choices of the
strength of the prior mean, the parameters of the decay
functions for the observations and for the prior (the decay
factor d in the case of exponential decay, and the scaling
parameter a and the power b in the case of power law decay),
and the sensitivity parameter in the case of the exemplar
models. The number of free parameters ranged from three to
six. The models were fit by searching a series of grids of
parameter values. The fit of each set of parameter values for
each model was measured by the mean square error between
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the model’s predicted course of learning and the participants’
actual course of learning, as represented by the 20 data points
in Figure 6. The strength decay over 160 observations that
resulted from the best-fitting power decay function is shown in
Figure 3.

The adjustment paths of the best-fitting models are shown in
Figure 8 averaging over the form of the prior decay, which did
not have much effect on the fits. The models all did fairly well,
showing that the course of adjustment in Experiment 2 over
both the EarlyChange and LateChange dimensions could be
successfully modeled by incorporating either exponential or
power law decay into the two categorization algorithms.

All the models captured some of the dip that occurred in the
participants’ predictions of the EarlyChange dimension dur-
ing Blocks 8 and 9. In the models, this dip occurred because of
the category confusion resulting from the change in the
LateChange dimension. The LateChange dimension was one
of the two dimensions available as a cue for predicting the
EarlyChange dimension, and as it began to change the models
showed some uncertainty about how to categorize the cue
ovals with that dimension. This uncertainty resulted in an
increased weight placed on the wrong category, which had a
recoded value near 0 for the EarlyChange dimension.

Table 1 gives significance tests for comparing the variance of
the model predictions around the participant means with the
variance of the participant means around the underlying
population means over the 20 points. These tests showed
whether the models’ predictions were significantly different
from the participant means, given the overall uncertainty in
using those participant means as estimators of the underlying

A) Rational model
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population means. The numerators for the F statistics are the
MSEs in Table 1. The denominator for the F statistics was
derived from the MSE of 0.0181 for a repeated measures
analysis of variance (ANOVA) for the 20 participants on the
20 points. This MSE gives the variance of the participants
around the participant means, and because there were 20
participants for each mean this implies that the variance of the
participant means around the underlying population means
was 0.000905.

The F tests in Table 1 show that all models except for one
showed deviations that were significantly different from the
participant means. The one model that was not significantly
different was the rational model with power decay of the
observations and exponential decay of the prior. In addition,
the other rational model with power decay of the observations
showed a deviation that had only borderline significance. Note
also that the exemplar models with power observation decay
achieved closer fits than did the corresponding exemplar
models with exponential observation decay, although all the
exemplar model fits were significantly different from the
participants’ performance.

To understand what was determining the performance of
the models, it is helpful to look at what the models are paying
attention to at the end of the experiment. Figure 9 shows the
proportion of weight the models placed on the opposite
category, on the prior, and on each of the 10 blocks of
observations for the correct category. These weight propor-
tions were actually approximations calculated for an average
observation. The weight proportions were calculated with the
assumption that observations from the opposite category

B) Exemplar model
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Figure 8. Comparison of model and participant predictions on EarlyChange and LateChange dimensions
of Experiment 2 (denoted EarlyChg and LateChg, respectively). Model results are shown separately for
power and exponential observation decay (denoted PowerObsDec and ExpObsDec, respectively),
averaged over the form of the prior decay. Predictions were averaged over categories, after being recoded
so that the true mean of each category of each dimension moved from 0 to 1 over the course of its change.
Panel A shows the rational model; Panel B shows the exemplar model.
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Table 1

Best Fitting Parameters and Resulting Mean Squared Error (MSE) for Eight Models Fitted to the 20-Block Averages of the

EarlyChange and LateChange Dimensions of Experiment 2

Obs Prior Obs Prior
Basic decay decay decay decay Prior
model form form parameters parameters strength  Sensitivity ~ MSE F statistic F test
Rational  Power Power (1 +.2397)72%*  (1+ 2197)"18 19.5 — 00159 F(15,361) =175 p=.04
Rational Power  Exp 1+ .1897)"+® 961" 425 — 00139  F(16,361) =153 p=.09
Rational Exp Power 971" (1 + .04517)=37 5.49 — 00374 F(16,361) =413 p <.001
Rational  Exp Exp 9717 9987 3.93 — 00387 F(17,361) =428 p < .001
Exemplar Power Power (1 + 1427)7136 (1 + .1877)7 1! 11.9 795 00323 F(14,361) =357 p <.001
Exemplar Power  Exp 1+ 2267)7120 949" 3.70 750 00252 F(15,361) =278 p < .001
Exemplar  Exp Power 970" (1 + .1687)"110 11.9 781 00392 F(15,361) =433 p <.001
Exemplar  Exp Exp 971" 963" 6.582 7012 00331 F(16,361)=3.66 p < .001
Note. Obs = observed; Exp = exponential.
sOther parameter values differing in the third digit produced the same MSE.
A) Rational model
would show a difference of 0.6 on each dimension and that P S S S S W
observations from the same category would show a difference 61 [
of 007 from the category mean and of 0.1 from other 3 ©  Exp ObsDecay
. . . 8 5 m Power ObsDecay B
observations in the same category. These latter differences g
were derived from the distribution of the stimulus values with a & 4 s
variance of 0.005 around the mean for each dimension of each -E 3] !
category. The weight proportions were calculated with the .% ’
decay that would apply if the models were being run on a 321st g 2 5 1
observation. E 14 L
Panel A of Figure 9 shows the weight proportions for the 2 o
rational models, collapsed over the form of the prior decay. R
The figure shows that the models with power observation B -1 —7— T 7T T 1 T T T

decay focused more attention on the most recent block of
observations (Block 10) and more on the earlier blocks of
observations (Blocks 1-7) than did the models with exponen-
tial observation decay. The net result was that the power
models were able to adjust quickly to new information while
still being restrained somewhat by the observations from the
beginning of the learning series. The rational models with
power observation decay put essentially no weight on the prior
or the opposite category at the end of the experiment. In
contrast, the rational models with exponential decay put a
substantial amount of weight on the prior at the end of the
experiment. With the exponential models, little weight re-
mained on the observations from the early part of the
experiment and so without some restraining influence these
models would have overshot the participants during the second
part of the experiment. The prior, with a value of 0.5 (on both
the original and recoded scales), was used by the exponential
models to provide a moderating force against the attention on
the most recent observations. This emphasis on the prior at the
end of the experiment was a way for the models with
exponential observation decay to make up for their inability to
maintain some significant strength on the early observations.
Note that even with the moderating force of the prior, the
rational models with exponential observation decay were
slower to adjust to the change on the EarlyChange dimension
and then overshot the participants at the end of the experi-
ment (Figure 8, Panel A).
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Figure 9. Proportion of weight placed by the models at the end of
Experiment 2 on the opposite category (OpC), on the prior (Pr), and
on each of the 10 blocks of observations for the correct category.
Results are shown separately for power and exponential observation
decay (denoted Exp ObsDecay and Power ObsDecay, respectively),
averaged over the form of the prior decay. Panel A shows the rational
model; Panel B shows the exemplar model.
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Panel B of Figure 9 shows the weight proportions of the
exemplar models. The high weight that these models placed on
the opposite category was in great contrast to the performance
of the rational models. For the rational models, a coupling
parameter of 0.3 assured that the models would produce two
clear categories for these stimuli. However, for the exemplar
models, the category discrimination was determined by the size
of the sensitivity parameter. Because this parameter was
estimated when fitting the models, it was possible to end up
with a very fuzzy distinction between the categories. In this
case, the exemplar models blurred the categories to provide a
moderating force to prevent overshooting the participants.
This was possible with these stimuli because both categories
moved in tandem for both dimensions, with the category values
coming together and then crossing.

In summary, the three tests of the form of memory decay in
Experiment 2 were all consistent with power law decay that
occurs by item: The overall adjustment pattern was better fit by
a model incorporating power law decay than by a model
incorporating exponential decay; the adjustment in Session 2
did not seem to be made easier by inserting a day’s delay, as
would occur if the Session 1 observations weakened over time;
and the predictions from the Session 1 observations did not
show a significant regression toward earlier values after a
delay, as would occur if they weakened according to a power
law from the passage of time alone. However, there was a
trend in Experiment 2 toward a regression effect, suggesting
that there may have been some decay occurring by time as well.
In Experiment 3 we investigated the regression effect further,
and in Experiment 4 we investigated how well the various
decay functions could be fit to a different adjustment pattern.

Experiment 3

Several flaws in the design of the previous experiment made
it difficult to interpret the nonsignificant trend toward regres-
sion. First, some of the test stimuli gave participants additional
observations on the changing dimension at the ending value,
which might have inhibited a tendency to show regression.
Second, because the change occurred by having the two
categories exchange values on the changing dimension, some
participants might have become confused when the category
values crossed. This confusion might have led these partici-
pants to construct new category definitions after the category
values crossed, and as a result to show little regression. Third,
given the nature of the category change in the previous
experiment, any apparent regression could have been caused
by a blurring of the category distinction after the delay, rather
than by a true regression.

Experiment 3 was designed to overcome the above three
weaknesses in our previous attempt to find a regression effect.
First, the tests did not use the changing dimensions as stimuli,
so no new observations on them were provided. Second, to
reduce confusion, the category values on the changing dimen-
sions did not cross but instead maintained the same ordinal
relation throughout the learning session. Third, the nature of
the changes was altered so that true regression could be
distinguished from category blurring. For each participant,

there was one dimension on which the categories moved closer
together and another on which the categories moved farther
apart. For the dimension on which the categories move closer
together, a regression would cause the categories to move
farther apart, thus working in the opposite direction from
category blurring. Finally, new stimuli with four separable
dimensions were used rather than the oval pairs to eliminate
possible coding problems with the integral height and width
dimensions of the ovals in the first two experiments.

Along with these changes to the stimulus structure, a new
learning task was added for this experiment. In our previous
test of the regression effect, we gave all participants the task of
predicting two missing dimensions for each stimulus from the
other two dimensions that were given as a cue. We reasoned
that if the task were made more like a memory retention task,
with more emphasis on remembering the individual observa-
tions than on finding a prediction strategy, then we might find a
stronger effect of time. This additional task thus served both as
a check on the sensitivity of our test for regression and as an
opportunity to contrast the effect of time for prediction and
memorization encoding. In the memorization version of the
learning task, participants were presented the stimuli to
memorize in groups of three and then had to reconstruct two
dimensions of the stimuli they had just seen when given two
dimensions as a cue. The prediction learning task was altered
to give comparable stimulus exposure by adding a review after
each group of three predictions. The learning sessions for both
tasks were followed by prediction tests.

In Experiment 3, we also changed the testing procedure to
include instructions directing participants to make their predic-
tions like the beginning or like the ending part of the learning
sequence. We added this instruction manipulation to test the
extent of participants’ explicit knowledge of the change.

Method

Participants and payment. The participants were 64 young adults
from the Carnegie Mellon University community, who received $5 or
course credit for their participation, plus a bonus of up to $7. None of
the participants had been involved in our previous experiments about
category change. The bonus was linked to the error-units score
associated with each prediction or reconstruction: The participants
received a bonus of 2¢ for an error-units score between 8 and 14, a
bonus of 4¢ for a score between 4 and 7, and a bonus of 6¢ for a score of
3 or less. The participants received bonuses for their answers in both
the learning and the test sections of the experiment, although because
the test sections provided no correction, the participants were in-
formed only about their total bonus at the end of each section.

Stimuli. The stimuli were caricatures of teapots, inspired by stimuli
used by Ahn and Medin (1992). The stimuli were presented on a
Macintosh Ilci computer with a monochrome two-page monitor. Each
teapot had four relevant dimensions: the base height, the handle
thickness, the lid width, and the spout elongation. The stimuli were
constructed so that they would fall into two categories. Two of the
dimensions were fixed for both categories, whereas the other two
dimensions each changed for one of the categories. The two fixed
dimensions provided unambiguous information about category mem-
bership. The change on the other two dimensions took place over a
series of five blocks of observations. Within each block, there were 12
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stimuli from each of the two categories, for a total of 120 stimuli for the
learning section of the experiment. Figure 10 shows the mean values
for the two categories for Blocks 1 and 5 for one of four stimuli
conditions (discussed below).

For both changing dimensions, only one of the categories changed
while the other stayed constant. In the example shown in Figure 10, the
changing dimensions are the lid width and the spout elongation. The
width of the lid increased for Category A and was always larger than
the constant width of Category B. The elongation of the spout
decreased for Category B and was always larger than the constant
elongation of Category A. The stimuli for all participants included one
dimension for which the categories moved farther apart, like the lid
width in Figure 10, and one dimension for which the categories moved
closer together, like the spout elongation in Figure 10.

In the example shown in Figure 10, the dimension where the
categories moved apart is also the dimension where the changing
category was increasing in size, whereas the dimension where the
categories moved together is also the dimension where the changing
category was decreasing in size. This pairing was counterbalanced, so
that the contrast of categories moving together or apart was not
confounded with change that was increasing or decreasing in size. In
addition, half of the participants saw the changes take place on base
height and handle thickness, instead of the lid width and spout
elongation as shown in Figure 10.

The four dimensions were each coded on a unit interval, although
the meaning of this code was different for each dimension. On the
screen, the base height ranged from 2.60 in. (66.0 mm) (coded as 0) to
4.68 in. (118.9 mm) (coded as 1). The handle thickness ranged from
0.06 in. (1.5 mm) (0) to 0.91 in. (23.1 mm) (1). The lid width ranged
from 0.13 in. (3.3 mm) (0) to 2.34 in. (59.4 mm) (1). The spout
elongation ranged from a half oval with a width diameter of 0.85 in.
(21.6 mm) and a height radius of 0.99 in. (25.1 mm) (0) to a half oval
with a width diameter of 1.98 in. (50.3 mm) and a height radius of 0.43
in. (10.9 mm) (1).

Figure 10. Mean values for stimuli used in Experiment 3, for
Categories A and B on Learning Blocks 1 and 5. Stimuli with changes
occurring on the lid and spout are shown, with the dimension where
categories moved apart paired with increasing size and the dimension
where categories moved together paired with decreasing size.

In terms of the unit value coding, the constant dimensions always
had a mean value of either 0.2 or 0.8, depending on the category. For
the changing dimensions, the value depended on the condition. For
the example shown in Figure 10, in which the dimension moving
together was the dimension where the changing category decreased in
size, the constant categories had a mean value of 0.2, whereas the
changing categories moved from 0.9 to 0.4 for the dimension moving
together, and from 0.4 to 0.9 for the dimension moving apart. In the
counterbalancing condition, in which the dimension moving together
was the dimension where the changing category increased in size, the
constant categories had a mean value of 0.8, while the changing
categories moved from 0.1 to 0.6 for the dimension moving together,
and from 0.6 to 0.1 for the dimension moving apart. As in the previous
experiments, these mean values were used to create a stimulus series
for each of the counterbalancing conditions. The same stimuli were
used for all participants within each condition but were randomly
ordered within each block for each participant.

As in the previous experiments, the learning sessions in the
prediction task condition required the participants to make a predic-
tion about two missing dimensions of each stimulus. Each prediction
was followed by a display of the full stimulus along with a superim-
posed outline of the participant’s prediction. The error units and
possible comments accompanying the display of the correct pair were
the same as in Experiments 1 and 2 with the addition of bonus
information on applicable trials. After predictions and corrections of
three stimuli, the participants were shown the complete versions of
those stimuli again in a random order as a review.

The memorization-task participants had the same two prediction—
correction and review sections as the prediction-task participants did,
but the order of the sections was reversed. For each group of three
stimuli, the memorization-task participants received their review
section first, with the instructions to memorize the stimuli to be able to
fill in the test items that would immediately follow. After memorizing
the three stimuli, the memorization-task participants then saw them in
arandom order in a memory test, which was identical to the prediction
task for the prediction-task participants, including a correction for
each reconstructed stimulus.

The reviewing time in the prediction-task condition and the preview-
ing time in the memorization-task condition were set at either 5 s or 15
s for each exemplar and were varied across participants. Participants
initiated the viewing of each set of three stimuli, and then the stimuli
were presented in series, each for the specified exposure. The viewing
time was controlled to ensure equal stimulus exposure for participants
in the prediction- and memorization-task conditions. Two times were
used to allow for more time-consuming viewing strategies, particularly
for the memorization-task participants who might have resorted to
simpler prediction methods if the viewing time seemed too short to try
to memorize individual stimuli.

In the prediction or reconstruction task, all pairs of dimensions were
used equally as stimulus cues within each learning block. The anchor
values for the dimensions to be predicted or reconstructed were
counterbalanced across participants, with 0 for half of the participants
and 1 for half of the participants.

After the learning phase, all participants completed two pairs of
prediction tests, one pair immediately after the learning task and one
pair following a delay of 24 h. In each pair of tests, one test included
instructions to make the test stimuli look like the teapots at the end of
the learning sequence, whereas the other test included instructions to
make the stimuli look like the teapots at the beginning of the learning
sequence. The order of these tests was the same on both days and was
counterbalanced across participants. For the prediction tests, only the
two constant dimensions were used as cues, and the participants’ task
was to fill in the two dimensions that had changed during the
experiment. There were 24 items in each of the four prediction tests,
half corresponding to each of the two categories. The test stimuli were
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constructed in the same way as the learning task stimuli, so that the
values of each dimension for each category were distributed with a
variance of 0.005.

Design. There were two between-subjects conditions: the learning
task and the time set for the viewing of each stimulus during the review
or preview section. There were three within-subject conditions: the
contrast between the first and second pair of prediction tests, the
contrast between the beginning and ending instructions within each set
of prediction tests, and the contrast between the dimensions moving
together and moving apart.

Procedure. Participants received on-line instructions that were
appropriate to their task. The wording of these instructions for the
learning session was as identical as possible for the two tasks.
Prediction-task participants were told that their task was to predict the
shapes of the teapots and that they would review the teapots in groups
of three after their predictions. Memorization-task participants were
told that their task was to memorize the teapots in groups of three and
that the teapots would then be shown in a test. Both groups of
participants were told for the prediction or test section of the learning
session that their task was to “fill in the other two parts so that the
complete teapot is correct.”

As before, the instructions did not mention that the teapots were
structured around categories or suggest that the definitions of a correct
teapot might change over the course of the experiment. Participants
were not informed at the start of the experiment that the learning task
would be followed by a prediction test, so for the memorization-task
participants the learning session instructions did not suggest that they
should prepare for such a test.

Once they were set up on the computer, participants proceeded
automatically from the on-line instructions to a practice session and
then to the learning task and the first pair of prediction tests. The
second session similarly sequenced automatically through the second
pair of prediction tests. Participants had unlimited time for all sections
of the experiment except for the viewing sections.

Results and Discussion

Figure 11 shows the course of learning for the prediction-
and memorization-task participants over the five blocks of the
experiment for the category experiencing the change for each
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Figure 11. Predictions on the changing categories of the changing
dimensions during the learning session of Experiment 3, shown
separately for the prediction-task and memorization-task participants
(denoted Pred and Mem, respectively). Predictions were averaged
over dimensions, after being recoded so that the true mean of the
changing category of each changing dimension moved from 0 on Block
1to 1 on Block 5. Error bars represent standard errors.

of the two changing dimensions. The results are recoded as for
the previous experiments so that after recoding the true mean
changes from 0 in Block 1 to 1 in Block 5.

The prediction-task participants replicated the adjustment
paths of the participants in Experiments 1 and 2. On Block 5,
the prediction-task participants’ recoded mean prediction was
0.673 unit, which was significantly greater than the equal
weighting average of 0.5 unit, #(31) = 5.897, p < .001, MSE =
0.0275. Averaging over Blocks 1-5, the prediction-task partici-
pants’ recoded mean prediction was 0.418 unit, which was
significantly less than the average true value of 0.5 unit, t(31) =
4.824, p < .001, MSE = 0.00932. As with the previous
experiments, these results indicate that the prediction-task
participants were placing more weight on the most recent
observations but that they were giving some weight to the
carlier observations as well. As would be expected by the
difference in learning tasks, the reconstructions by the memo-
rization-task participants followed the change in true values
more closely than did the predictions of the prediction-task
participants. There was a significant interaction between the
learning task and the five-block course of learning, F (4,240) =
3.183,p = .01, MSE = 0.0177.

There were no interesting significant effects of the viewing
time on either the course of learning or the prediction tests,
and so we do not discuss that manipulation further.

Despite the differences resulting from the two learning tasks
that were evident during the learning phase, the two groups of
participants performed the same on the first-day tests. The
participants averaged 0.708 unit on the first test with ending
instructions and 0.459 unit on the first test with beginning
instructions. There was no significant effect of task on these
tests, F(1, 60) = 0.385,p > .53, MSE = 0.0398, and F(1, 60) =
0.060, p > .80, MSE = 0.0461, for the first ending test and the
first beginning test, respectively.

Between the tests on the first and second days, the partici-
pants showed a within-subject regression effect, F(1, 60) =
37.683,p < .001, MSE = 0.0096. Averaged over the beginning
and ending instructions, the predictions showed a drop of
0.075 unit, moving from 0.583 unit on Day 1 to 0.508 unit on
Day 2. The regression effect did not interact significantly with
the learning task, F(1, 60) = 1.965, p = .17, MSE = 0.0096.
However, there was a nonsignificant trend in the predicted
direction, with the prediction-task participants showing a
regression of 0.058 and the memorization-task participants
showing a regression of 0.092. Thus, the trend suggests that
regression may be stronger when exemplar encoding is stron-
ger because of memorization instructions.

To contrast the effects of true regression and of category
blurring, the experiment included both a changing dimension
that moved together and a changing dimension that moved
apart. For the change where the categories moved apart,
regression would be indistinguishable from category blurring,
because both would move the changing category back toward
the constant category. In contrast, for the change where the
categories moved together, category blurring would still move
the changing category toward the constant category, but
regression would move the changing category away from the
constant category. There was no significant interaction be-
tween the regression effect and the type of change (together or
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apart), F(1,60) = 0.567,p > .45, MSE = 0.0329. This indicates
that the regression effect was not an artifact of category
blurring.

Participants showed a strong and significant effect of the
instructions on their test predictions, F(1, 60) = 62.075, p <
001, MSE = 0.0561. Averaged over the two days, the predic-
tions for the instructions differed by 0.233, with participants
averaging 0.429 and 0.662 for the beginning and ending
instructions, respectively. Thus, the participants in aggregate
indicated significant knowledge of the nature of the change
that had occurred in the category definitions. There was no
predicted interaction between the instruction effect and the
learning task, and none was found.

There was no statistically significant interaction between the
regression and instruction effects, F(1, 60) = 1.710, p > .19,
MSE = 0.00957. Participants regressed from 0.708 to 0.617 for
the ending instruction tests and from 0.459 to 0.400 for the
beginning instruction tests. This lack of interaction contradicts
a possible model of the instruction effect in which the
participants respond by selectively using only the earlier or the
later observations from the learning session. If the instruction
effect were produced by this kind of segregation, then only the
ending tests would show regression because the beginning
observations would have already gone through their period of
fast initial power law decay and so would experience little
reweighting overnight.

The regression and instruction effects were also statistically
independent across participants, showing only a weak and
nonsignificant correlation, r(62) = .105, p > .40. This statisti-
cal independence implies that the apparent display of joint
regression and instruction effects was not an artifact of
averaging over participants. It would be plausible to suppose
that some participants used a strategy that produced a strong
instruction effect and a weak regression effect (say by focusing
on updating rules rather than on remembering exemplars),
whereas other participants used a strategy that produced a
strong regression effect and a weak instruction effect (say by
focusing on remembering exemplars rather than on updating
rules). Such a strategy difference would have produced both
regression and instruction effects in the aggregate, but it would
also have produced a negative correlation between the effects
across participants, which was not found.

The purpose of Experiment 3 was to provide a cleaner test of

Table 2

the regression effect, whose existence was suggested by Experi-
ment 2. The data show a within-subject regression effect of
about 0.075 that was highly statistically significant. The modest
size of the regression effect was comparable to the size of the
trend found in Experiment 2. This regression effect was not
due to category blurring. There was a nonsignificant trend
suggesting that the regression effect may have been stronger
when exemplar encoding was stronger because of memoriza-
tion instructions. In addition, the experiment shows that
participants had some knowledge of the change that they were
able to use to respond differentially to the beginning and
ending test instructions. This instruction effect did not interact
with the regression effect, and the two effects were statistically
independent.

Modeling the Regression Effect

The regression effect seen in Experiments 2 and 3 suggests
that some reweighting occurred among the past observations
overnight, increasing the relative weight of the earlier observa-
tions while decreasing the relative weight of the later observa-
tions. Such reweighting could have been produced with power
law decay of the observations over the delay. However, there
was no indication of a delay effect on the adjustment pattern in
Experiment 2, as measured by the speed of adjustment for the
different changes shown in Figure 7. The apparent contradic-
tion can be explained as resulting from time decay over 24 h
that was small relative to the item decay from 160 new
observations. If this was the case, then the impact of new
observations in Session 2 would have quickly overwhelmed the
difference between the immediate and delay participants that
could be seen in test performance before any new observations
had been added.

This explanation can be illustrated with the two rational
models that caused the observations to decay according to a
power law. When the models were run on both the learning
and test portions of Experiment 2, it was possible to produce a
regression of about 0.057 (the size found in Experiment 2)
without greatly affecting the course of adjustment by the
LateChange dimension after the delay. The models were run
on both the learning and test portions of Experiment 2, using
the best fitting parameters shown in Table 2. The learning
session portion of the simulations was run exactly as before. To

Best Fitting Parameters, Resulting Mean Squared Error (MSE ), and Significance Tests for Eight Models Fitted to the 60-Block Averages
of the Single-Change and Reverse-Change Dimensions of Experiment 4

Obs Prior Obs Prior

Basic decay  decay decay decay Prior

model form form parameters parameters strength  Sensitivity =~ MSE F statistic F test
Rational Power Power (1 +.07517)"1% (1 + .009437)-144 8.07 — .00430  F(55,870) = 1.17 =.19
Rational Power  Exp (1 +.09497)-141 993+ 6.35 — 00387  F(56,870) =105 p=.38
Rational Exp Power 975" (1 +.1007)~ 175 10.4 — 00625  F(56,870) =1.70 p < .01
Rational Exp Exp 9747 997" 9.11 — 00544  F(57,870) =148 p=.01
Exemplar  Power Power (1 +.09007)7150 (1 + .006967)-2% 3.02 7.51 00412 F(54,870)=1.12 p=.26
Exemplar  Power  Exp (1+.07107)-1% 9927 3.10 6.85 00380  F(55,870) =103 p=.42
Exemplar  Exp Power 9757 (1 + .01007)~%° 5.41 7.39 00554  F(55,870) =151 p=.01
Exemplar  Exp Exp 977" .993" 7.822 4.392 00540 F(56,870) =147 p=.02

Note.  Each dimension is separated into start-midpoint and start-endpoint conditions. Obs = observed; Exp = exponential.
*Other parameter values differing in the third digit produced the same MSE.
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generate Test 1 performance, the models were used to make
predictions about each of the Test 1 items, without recording
any of the test items as observations. During this first test, the
observation strengths were fixed at the values attained at the
end of Learning Session 1, with no further decay occurring
during the test. Test 2 performance was then obtained by
decaying the observation strengths by four time units, which
was just enough decay to result in a regression of about 0.057
from Test 1. Although there was an effect of this four-unit
delay on the LateChange adjustment, the effect was very small.
On Block 6, the immediate and delay models differed by only
0.004 and 0.003 on the EarlyChange and LateChange dimen-
sions, respectively. Thus, the models suggest that it was hardly
surprising that the delay showed no significant impact on the
LateChange adjustment in Experiment 2.

Experiment 4

Experiment 4 was designed to replicate the finding that the
adjustment pattern was better fit by a model incorporating
power law decay than by-a model incorporating exponential
decay. As in Experiment 2, this experiment had two dimen-
sions experiencing change, but both the structure of the
changes and the nature of the stimuli were different than in
Experiment 2. Experiment 4 used the teapot stimuli from
Experiment 3, with the basic change on two dimensions
defined in the same way as it was in that experiment. This basic
change appeared during the middle third of Experiment 4 for
both dimensions. During the first third of the experiment both
dimensions were constant at the initial value. During the last
third of the experiment one dimension stayed constant at the
ending value, while the other dimension reversed the change
to return to the starting value.

Method

Farticipants. The participants were 32 young adults from the
Carnegie Mellon University community, who received $5 or course
credit for their participation, plus a bonus of between $3 and $12. The
bonus was linked to the error-units score associated with each
prediction, as in Experiment 3. None of the participants had been
involved in our previous experiments about category change.

Stimuli.  The stimuli were caricatures of teapots, as in Experiment
3. As before, the teapots had four relevant dimensions and were
constructed so that they would fall into two categories. Two of the
dimensions were fixed for both categories, and the other two dimen-
sions each changed for one of the categories. The two fixed dimensions
provided unambiguous information about category membership.

The stimuli were divided into 15 blocks, each with 12 observations
from each of the two categories, for a total of 360 stimuli. As in the
previous experiment, the change on the two changing dimensions was
defined over a series of 5 blocks of observations. In this case, the
change for both dimensions occurred on Blocks 6-10. During Blocks
1-5, both of the changing dimensions were constant at the Block 6
value. During Blocks 11-15, one of the changing dimensions (single-
change) stayed constant at the value reached on Block 10. The other
dimension (reverse-change) reversed the change process during Blocks
11-15, repeating the Block 10 value on Block 11 and then working
backward to the Block 6 value on Block 15. The learning sequence was
broken up into three consecutive sessions of 5 blocks, comparable to
the two learning sessions of Experiment 2 but without tests between
sessions.

The mean values for the two categories for Blocks 6-10 corre-
sponded to those used for Blocks 1-5 in Experiment 3. Figure 10 for
Experiment 3 shows these values for one of the four stimuli conditions.
As in Experiment 3, the stimuli were counterbalanced for (a) both
possible pairings of the dimensions moving together or apart with the
actual direction of the change (increasing or decreasing), (b) the
different pairs of dimensions experiencing the change (handle and
base, or lid and spout), and (c) the location of the anchor values on the
dimensions that the participants needed to adjust (0 or 1).

As before, the learning sessions required the participants to make a
prediction about two of the dimensions of each stimulus, which was
followed by a display of the stimulus along with a superimposed outline
of the participant’s prediction. Like Experiment 3 and unlike Experi-
ment 2, there was no pairing of the dimensions to be predicted, so that
every possible pairing of two target dimensions was encountered
equally often. Like Experiment 2 and unlike Experiment 3, only a
simple prediction learning task was used, with no reviewing session for
the stimuli.

Design. There were two within-subject conditions. The first was the
contrast between the single-change and reverse-change dimensions.
The second within-subject condition was a contrast in the recoded
midpoint of the full interval, which was produced by the counterbalanc-
ing. For the changes that went from 0.4 t0 0.9 and from 0.6 to 0.1 on the
full interval, the midpoint of 0.5 on the full interval became 0.2 when
the values were recoded as in the previous experiments so that the
starting point of the change was 0 and the ending point was 1. For the
changes that went from 0.9 to 0.4 and from 0.1 to 0.6 on the full
interval, the midpoint of 0.5 on the full interval became 0.8 when the
values were recoded. Thus, on the recoded scale there was a contrast
between changes with a recoded midpoint value of 0.2 and those with a
recoded midpoint value of 0.8. The counterbalancing also produced a
between-subjects contrast in how these recoded midpoint values of 0.2
and 0.8 were paired with the single-change and reverse-change
dimensions.

Procedure. The overall procedure was similar to that in the
previous experiments. The 15 blocks of the learning section were
divided into three sections of 5 blocks each. The participants had
unlimited time for all sections. ’

Results and Discussion

Figure 12 shows the course of learning by all participants
over the 15 blocks of the learning sequence for the single-
change and reverse-change dimensions, respectively. The re-
sults were recoded as in the previous experiments. Overall, the
participants replicated the previous experiments in showing a
pattern of predictions that appeared to emphasize more recent
observations.

The results in Figure 12 are shown separately for the two
recoded midpoint values. There was a significant interaction
between the recoded midpoint contrast and the 15 learning
blocks for both the single-change and reverse-change dimen-
sions, F(14, 420) = 4.015, p < .001, MSE = 0.0573, and F(14,
420) = 5.167,p < .001, MSE = 0.0343, respectively. The figure
shows that participants began with recoded predictions in
Block 1 that were near the recoded midpoint values. Given
these initial starting points, it is not surprising that the
participants’ predictions approached the true recoded value of
zero more quickly when the recoded midpoint was 0.2 than
when it was 0.8. -

The performance shown in Figure 12 was modeled in the
same way as was the performance for Experiment 2. The
models yielded separate estimates for the two different re-
coded midpoint conditions for both the single-change and
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Figure 12. Average predictions for Experiment 4, shown separately
for the two recoded midpoints. Panel A shows the single-change
dimension; Panel B shows the reverse-change dimension. Predictions
were averaged over dimensions, after being recoded so that the true
mean of the changing category of each changing dimension moved
from 0 on Block 6 to 1 on Block 10. Error bars represent standard
errors.

reverse-change dimensions, resulting in comparisons across 60
points between the participants and each of the models. Both
the rational and exemplar models were used. As before, four
versions of each model were estimated, allowing the decay
functions for both the observations and the prior to be either
exponential or power law. All versions of the rational model
successfully separated the stimuli into two categories. The
mean squared errors for the best-fitting models are reported in
Table 2.

Table 2 gives significance tests for comparing the variance of
the model predictions around the participant means with the
variance of the participant means around the underlying
population means. The test statistics were calculated as for
Experiment 2. A repeated measures ANOVA with one be-
tween-subjects variable yielded an MSE of 0.0587. With 16
participants for each mean, this MSE implied a variance of
0.00367 for the participant means around the underlying
population means. When the observations were decayed accord-
ing to a power law, the model predictions could not be rejected
as being significantly different from the participant means,
given the overall uncertainty in the estimates of those means.
In contrast, when the observations were decayed exponen-

tially, the models could be rejected as showing a significant
deviation from the participant means. There was no apparent
effect of the form of the prior decay function and no apparent
difference between the rational and exemplar models.

Figure 13 shows a comparison of the performance of the
participants and the models on each of the four dimension-by-
recoded-midpoint conditions. To focus attention on the system-
atic effects of the observation decay function, the panels of the
figure average over the four models for each of the observation
decay conditions. These panels show that the large systematic
deviations between the power and exponential models came
toward the end of the adjustment path for both dimensions
and occurred only when the recoded midpoint was 0.8 (Panels
B and D). In both cases, the power models were close to the
participants and the exponential models were floating above.
This contrast is elaborated in Figure 14, which shows the
difference between the two recoded midpoint conditions
averaged over both dimensions. During the first third of the
experiment, participants showed much higher recoded predic-
tions when the recoded midpoint was 0.8 than when it was 0.2,
but this difference between the two recoded midpoints disap-
peared for the participants by the last third of the experiment.
By placing weight on the prior and decaying that weight over
time, the models had no trouble reproducing the large recoded
midpoint difference during the first third of the experiment
and decreasing that difference over the last two-thirds of the
experiment. However, the models did not fully eliminate the
recoded midpoint difference by the last third of the experi-
ment. This difficulty was more pronounced for the models with
exponential observation decay.

Figure 15 shows the proportion of weight the models gave to
the observations and to the prior at the end of the experiment.
The weight proportions given to the prior in this figure explain
the substantial recoded midpoint differences that the models
showed for the last third of the experiment, as shown in Figure
14. The models used the midpoint of the full interval as their
prior. As a result, on the recoded scale there was a 0.6
difference in the prior values used for the two different
recoded midpoint conditions. The 0.16 proportion of weight
that the exponential models placed on the prior at the end of
the experiment explained the 0.11 recoded midpoint differ-
ence that they showed during the last third. Similarly, the 0.08
proportion of weight that the power models placed on the
prior explained their 0.06 recoded midpoint difference during
the last third. The models were using the prior not only to
produce the recoded midpoint difference shown by the partici-
pants during the first two-thirds of the experiment but also as a
moderating force to prevent them from overshooting the
participants by adjusting too quickly to new values later in the
experiment. Overshooting was more of a problem for the
exponential models, because the shape of the decay function
made it more difficult to place weight on the earlier observa-
tions. In contrast, the power models placed relatively more
weight on the earlier observations, and so benefitted from their
moderating force on adjustment. As a result, the power models
required less moderation from the prior and so produced a
smaller recoded midpoint difference during the last third of
the experiment. Thus, their performance was closer to that of
the participants.

Experiment 4 was conducted to replicate the findings from
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A) Single-change dimension, recoded midpoint 0.2
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C)  Reverse-change dimension, recoded midpoint 0.2
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B) Single-change dimension, recoded midpoint 0.8
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D) Reverse-change dimension, recoded midpoint 0.8
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Figure 13. Comparison of model and participant predictions on the four dimension-by-recoded-midpoint
conditions of Experiment 4. Model results are shown separately for power and exponential observation
decay (denoted Power ObsDecay and Exp ObsDecay, respectively), averaged over the form of the prior
decay and the type of model. Predictions were averaged over dimensions, after being recoded so that the
true mean of the changing category of each changing dimension moved from 0 on Block 6 to 1 on Block 10.
Panel A shows the single-change dimension with a recoded midpoint of 0.2; Panel B shows the
single-change dimension with a recoded midpoint of 0.8. Panel C shows the reverse-change dimension
with a recoded midpoint of 0.2; Panel D shows the reverse-change dimension with a recoded midpoint

of 0.8.

Experiment 2 that the models with power decay of the
observations gave closer fits to the participants’ adjustment
paths than did models with exponential decay of the observa-
tions. This experiment found clear preference for power decay
of the observations. The models using exponential decay of the
observations apparently performed worse because they re-
quired a relatively strong weight on the prior to prevent them
from overshooting the participants. Unlike Experiment 2,
there was no apparent difference between the rational and
exemplar models. In Experiment 2, the exemplar models
moderated their adjustment by placing substantial weight on
the observations from the opposite category. However, the
exemplar models could not exploit this option in Experiment 4
because half the time the opposite category would have made

their responses more extreme. As a result, the exemplar
models for this experiment gave better fits with high sensitivity
parameters that clearly differentiated the categories and thus
produced fits that were very similar to those of the rational
models.

General Discussion

All four experiments reported here found that participants
were relatively successful in adapting to category change. This
adaptation could be modeled by incorporating memory decay
into either the rational categorization algorithm or an exem-
plar categorization algorithm. In contrast to a model of
adaptation that bases performance on the more recent obser-
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Figure 14. Prediction differences between the recoded midpoint
conditions for the models and participants on Experiment 4, averaged
over dimensions. Model results are shown separately for power and
exponential observation decay (denoted Exp ObsDecay and Power
ObsDecay, respectively), averaged over the form of the prior decay
and the type of model. Differences were calculated after recoding so
that the true mean of the changing category of each changing
dimension moved from 0 on Block 6 to 1 on Block 10.

vations alone, a memory decay model assumes that after each
stimulus is observed it will have a continued, though diminish-
ing, impact on the remainder of the experiment. A bias toward
more recent observations combined with a continuing impact
of past observations was seen in all experiments, most strik-
ingly in the later sessions of Experiments 2 and 4.

The specific form of the decay of past observations was
closer to a power law function than to an exponential function.
In the adjustment to complex change in Experiments 2 and 4,
power law decay of observations consistently yielded closer fits
to average participant performance than did exponential
decay, although the difference was only marginal for the
rational models in Experiment 2. The regression effect found
in Experiments 2 and 3 strongly supported power law decay of
the observations over exponential decay. The experiments
showed evidence of both time and item decay, with the time
decay resulting from an overnight delay being equivalent to the
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Figure 15. Proportion of weight placed by the models at the end of
Experiment 4 on the opposite category (OpC), on the prior (Pr), and
on each of the 15 blocks of observations for the correct category.
Model results are shown separately for power and exponential
observation decay (denoted Exp ObsDecay and Power ObsDecay,
respectively), averaged over the form of the prior decay and the type of
model.
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Figure 16. Results of nine paired-associate studies with participants
showing spontaneous recovery: Abra (1967), p. 642 (denoted Abra 67);
Ceraso & Henderson (1965), p. 301 (denoted CerasoH 65); Ceraso &
Henderson (1966), p. 315 (denoted CerasoH 66); Ceraso, Schiffman,
& Becker (1965), pp. 262-263 (denoted CerasoSB 65); Koppenaal
(1963), p. 313 (denoted Koppenaal 63); Lehr & Duncan (1970), p. 109
(denoted LehrD 70); Martin & Mackay (1970), p. 316 (denoted
MartinM 70); Postman, Stark, & Fraser (1968), p. 683 (denoted
PostmanSF 68); Slamecka (1966), p. 206 (denoted Slamecka 66). Test
results were coded as the proportion of A-C responses.

item decay resulting from about four observations. Overall, the
findings were consistent with a rational analysis suggesting that
the strength decay in categorization should have the same
functional form as that found in the memory retention litera-
ture.

The regression effect is reminiscent of the spontaneous
recovery phenomenon found in the paired-associates litera-
ture (see Brown, 1976; Crowder, 1976). That phenomenon was
obtained when participants were exposed to an A-B, A—C
training sequence and then tested for recall of both lists using
the A cues, both immediately after training and then at a delay.
On the immediate test, participants gave a higher proportion
of associates from the more recent A—C list, but this was
followed by an increase in the proportion of associates from
the earlier A-B list in the delay test. Figure 16 shows the test
results of nine different paired-associates studies in which
participants exhibited a spontaneous recovery. The test results
were coded in terms of the proportion of A-C responses, so
they are comparable to the presentation of the changing
category experiments reported here.’ The delay for the same-
day delay tests ranged from 14 min to 6 h, whereas the delay for
the later-day delay tests ranged from 1 to 7 days. A simple
average over the studies suggests that there was a drop in the
proportion of A-C responses of about 0.05 between an
immediate test and a same-day delayed test, followed by an

5 These studies were drawn from a longer list cited by Brown (1976)
and were chosen because their results were reported in a way that
allows them to be recoded in terms of the proportion of A-C
responses. Only one recodable study was excluded from the graph
(Goggin, 1966, Lists 1 and 3)—it was excluded because of its unusually
low proportion of A-C responses: 0.46 immediately and 0.20 on a
same-day delay test (estimated from a published graph). The delay was
only 34s.
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additional drop of about 0.02 between a same-day delayed test
and a delayed test on a later day. The relatively modest size of
spontaneous recovery was comparable to the modest size of
the regression effect found for predictions from changing
categories.

The finding that memory decay in categorization is closer to
a power law than to an exponential gives suggestive evidence
that predictions from changing categories are based on exem-
plar memories. In principle, power law decay can be approxi-
mated with several summary statistics rather than with indi-
vidual exemplar traces, but the similarity to the memory
retention literature is striking, and it would be parsimonious to
conclude that the same system, or a comparable one, is at
work. However, the instruction effect in Experiment 3 shows
that participants also had access to knowledge about the
nature of the changes that was independent of the decay
process producing the regression effect. This finding suggests
that participants used generalizations of the stimuli that could
reveal the nature of the change, along with exemplars that
could produce the regression effect.

Overall, the pattern of adjustment to changing categories in
these experiments was qualitatively similar to the adjustment
to real-world changing categories, despite the fact that changes
in the real world typically take place over days or years, rather
than minutes. In both the real world and the laboratory, it
appears that people are quite successful at adjusting to
category changes but that it takes some time for the new
observations to overcome the lingering effect of old observa-
tions. The experiments further suggest that there is a cumula-
tive effect of past observations, reflected in the power law form
of decay, so that the adjustment process takes longer as one
accumulates an increasing number of past observations. It
would be interesting to know whether this lingering effect
holds over longer times with more observations and whether
there is a comparable slowdown in adjustment to change in
real-world settings as people acquire more observations in a
particular domain. In addition, it would be interesting to know
how the effect responds to differences in the abruptness of the
change and to participants’ expectations about the possibility
of change.
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